Parallelization of a beam dynamics code and first large scale radio frequency quadrupole simulations

نویسندگان

  • J. Xu
  • B. Mustapha
  • V. N. Aseev
  • P. N. Ostroumov
چکیده

The design and operation support of hadron (proton and heavy-ion) linear accelerators require substantial use of beam dynamics simulation tools. The beam dynamics code TRACK has been originally developed at Argonne National Laboratory (ANL) to fulfill the special requirements of the rare isotope accelerator (RIA) accelerator systems. From the beginning, the code has been developed to make it useful in the three stages of a linear accelerator project, namely, the design, commissioning, and operation of the machine. To realize this concept, the code has unique features such as end-to-end simulations from the ion source to the final beam destination and automatic procedures for tuning of a multiple charge state heavyion beam. The TRACK code has become a general beam dynamics code for hadron linacs and has found wide applications worldwide. Until recently, the code has remained serial except for a simple parallelization used for the simulation of multiple seeds to study the machine errors. To speed up computation, the TRACK Poisson solver has been parallelized. This paper discusses different parallel models for solving the Poisson equation with the primary goal to extend the scalability of the code onto 1024 and more processors of the new generation of supercomputers known as BlueGene (BG/L). Domain decomposition techniques have been adapted and incorporated into the parallel version of the TRACK code. To demonstrate the new capabilities of the parallelized TRACK code, the dynamics of a 45 mA proton beam represented by 108 particles has been simulated through the 325 MHz radio frequency quadrupole and initial accelerator section of the proposed FNAL proton driver. The results show the benefits and advantages of large-scale parallel computing in beam dynamics simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تطبیق پذیری باریکه -H در قسمت انرژی پایین و متوسط ماشین Linac4 در سرن

Linac4 is the near future 160 MeV H- linear accelerator of the CERN presently under construction. It will replace the present Linac2 as injector of the proton accelerator complex in CERN. The Linac4 is composed of a 45 keV ion source, a Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ), which accelerates the beam to 3 MeV, and a Medium Energy Beam Transport (MEBT), ...

متن کامل

Commissioning of the Low Energy Beam Transport

The Front End Test Stand (FETS) at the Rutherford Appleton Laboratory is intended to demonstrate the early stages of acceleration (0-3 MeV) and beam chopping required for high power proton accelerators, including proton drivers for pulsed neutron spallation sources and neutrino factories. A Low Energy Beam Transport (LEBT), consisting of three solenoids and four drift sections, is used to trans...

متن کامل

Beam Dynamics On-line Simulation

The V-code development has been motivated by the necessity of a powerful tool for the beam dynamics on-line simulation. Based on the Ensemble model [1], the V-code provides the possibility of fast and efficient beam dynamics simulation. Such a tool is as important for the accelerator commissioning as for the operating machine. The main principles of the code are the complete accelerator simulat...

متن کامل

The Radio Frequency Quadrupole (RFQ)

In this paper we explain the function and the beam dynamics of a Radio Frequency Quadrupole (RFQ) in the context of the CAS School for Small Accelerators.

متن کامل

Mixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver

In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007